翻訳と辞書 |
Ideal class group : ウィキペディア英語版 | Ideal class group
In mathematics, for a field ''K'' an ideal class group (or class group) is the quotient group ''JK/PK'' where ''JK'' is the whole fractional ideals of ''K'' and ''PK'' is the principal ideals of ''K''. The extent to which unique factorization fails in the ring of integers of an algebraic number field (or more generally any Dedekind domain) can be described by the ideal class group (or class group). If this group is finite (as it is in the case of the ring of integers of a number field), then the order of the group is called the class number. The multiplicative theory of a Dedekind domain is intimately tied to the structure of its class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain. == History and origin of the ideal class group ==
Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integral quadratic forms, as put into something like a final form by Gauss, a composition law was defined on certain equivalence classes of forms. This gave a finite abelian group, as was recognised at the time. Later Kummer was working towards a theory of cyclotomic fields. It had been realised (probably by several people) that failure to complete proofs in the general case of Fermat's last theorem by factorisation using the roots of unity was for a very good reason: a failure of the fundamental theorem of arithmetic to hold in the rings generated by those roots of unity was a major obstacle. Out of Kummer's work for the first time came a study of the obstruction to the factorisation. We now recognise this as part of the ideal class group: in fact Kummer had isolated the ''p''-torsion in that group for the field of ''p''-roots of unity, for any prime number ''p'', as the reason for the failure of the standard method of attack on the Fermat problem (see regular prime). Somewhat later again Dedekind formulated the concept of ideal, Kummer having worked in a different way. At this point the existing examples could be unified. It was shown that while rings of algebraic integers do not always have unique factorization into primes (because they need not be principal ideal domains), they do have the property that every proper ideal admits a unique factorization as a product of prime ideals (that is, every ring of algebraic integers is a Dedekind domain). The size of the ideal class group can be considered as a measure for the deviation of a ring from being a principal domain; a ring is a principal domain if and only if it has a trivial ideal class group.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Ideal class group」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|